AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP

Preprints

Explore 46,419 preprints on the Authorea Preprint Repository

A preprint on Authorea can be a complete scientific manuscript submitted to a journal, an essay, a whitepaper, or a blog post. Preprints on Authorea can contain datasets, code, figures, interactive visualizations and computational notebooks.
Read more about preprints.

Effects of an Embedded B-star Wind on the Properties of the Near-by Cloud: Ophiuchus
Hope How-Huan Chen
Alyssa Goodman

Hope How-Huan Chen

and 1 more

May 29, 2013
ABSTRACT. ρ Ophiuchii is a group of five B-stars, embedded in a nearby molecular cloud: Ophiuchus, at a distance of ∼ 119 pc. A “bubble”-like structure is found in dust thermal emission around ρ Oph. The circular structure on the Hα map further indicates that this bubble is physically connected to the source at the center. The goal of this paper is to estimate the impact of feedback from these embedded B-stars on the molecular cloud, by comparing the energy associated with the material entrained in the bubble to the total turbulent energy of the cloud. In this paper, we combine data from the COMPLETE Survey, which includes ¹²CO (1-0) and ¹³CO (1-0) molecular line emission from FCRAO, an extinction map derived from 2MASS near-infrared data using the NICER algorithm, and far-infrared data from IRIS (60/100 μm) with data from the Herschel Science Archive (PACS 100/160 μm and SPIRE 250/350/500 μm). With the wealth of data tracing different components of the cloud, we try to determine the best strategy to derive physical properties and to estimate the energy budget in the shell and in the cloud. We also experiment with the hierarchical Bayesian-fitting technique introduced by in an effort to eliminate the bias in the derived column densities and/or temperatures induced by noise in the far-IR data. We find that the energy entrained in the bubble is ∼ 12 % of the total turbulent energy of the Ophiuchus molecular cloud. This fraction is similar to the number give for the Perseus molecular cloud, and it suggests the non-negligible role of B-stars in driving the turbulence in clouds. We expect that a complete survey of “bubbles” in the Ophiuchus cloud will reveal the importance of B-star winds in molecular clouds.
Angular momentum transport within evolved low-mass stars
Matteo Cantiello
Christopher Mankovich

Matteo Cantiello

and 4 more

May 21, 2013
Asteroseismology of 1.0 − 2.0M⊙ red giants by the _Kepler_ satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the Helium burning clump. The inferred rotation rates are 10 − 30 days for the ≈0.2M⊙ He degenerate cores on the RGB and 30 − 100 days for the He burning core in a clump star. Using the MESA code we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific _Kepler_ asteroseismic target, KIC8366239.
The Bones of the Milky Way
Alyssa Goodman
Chris Beaumont

Alyssa Goodman

and 10 more

January 07, 2013
ABSTRACT The very long, thin infrared dark cloud Nessie is even longer than had been previously claimed, and an analysis of its Galactic location suggests that it lies directly in the Milky Way’s mid-plane, tracing out a highly elongated bone-like feature within the prominent Scutum-Centaurus spiral arm. Re-analysis of mid-infrared imagery from the Spitzer Space Telescope shows that this IRDC is at least 2, and possibly as many as 8 times longer than had originally been claimed by Nessie’s discoverers, ; its aspect ratio is therefore at least 150:1, and possibly as large as 800:1. A careful accounting for both the Sun’s offset from the Galactic plane (∼25 pc) and the Galactic center’s offset from the (lII, bII)=(0, 0) position defined by the IAU in 1959 shows that the latitude of the true Galactic mid-plane at the 3.1 kpc distance to the Scutum-Centaurus Arm is not b = 0, but instead closer to b = −0.5, which is the latitude of Nessie to within a few pc. Apparently, Nessie lies _in_ the Galactic mid-plane. An analysis of the radial velocities of low-density (CO) and high-density (${\rm NH}_3$) gas associated with the Nessie dust feature suggests that Nessie runs along the Scutum-Centaurus Arm in position-position-velocity space, which means it likely forms a dense ‘spine’ of the arm in real space as well. No galaxy-scale simulation to date has the spatial resolution to predict a Nessie-like feature, but extant simulations do suggest that highly elongated over-dense filaments should be associated with a galaxy’s spiral arms. Nessie is situated in the closest major spiral arm to the Sun toward the inner Galaxy, and appears almost perpendicular to our line of sight, making it the easiest feature of its kind to detect from our location (a shadow of an Arm’s bone, illuminated by the Galaxy beyond). Although the Sun’s (∼25 pc) offset from the Galactic plane is not large in comparison with the half-thickness of the plane as traced by Population I objects such as GMCs and HII regions (∼200 pc; ), it may be significant compared with an extremely thin layer that might be traced out by Nessie-like “bones” of the Milky Way. Future high-resolution extinction and molecular line data may therefore allow us to exploit the Sun’s position above the plane to gain a (very foreshortened) view “from above" of dense gas in Milky Way’s disk and its structure.
← Previous 1 2 … 1927 1928 1929 1930 1931 1932 1933 1934 1935 Next →
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy