REFERENCES
Albrecht, M., Duelli, P., Müller, C., Kleijn, D. & Schmid, B. (2007).
The Swiss agri‐environment scheme enhances pollinator diversity and
plant reproductive success in nearby intensively managed farmland.J. Appl. Ecol. , 44, 813– 822.
Buhk, C., Oppermann, R., Schanowski, A., Bleil, R., Lüdemann, J. &
Maus, C. (2018): Flower strip networks offer promising long term effects
on pollinator species richness in intensively cultivated agricultural
areas. BMC Ecol. , 18, 55.
Bartomeus, I., Gagic, V. & Bommarco, R. (2015). Pollinators, pests and
soil properties interactively shape oilseed rape yield. Basic
Appl. Ecol., 16, 737 –745.
Bátary, P., Baldi, A., Kleijn, D., & Tscharntke, T. (2010).
Landscape-moderated biodiversity effects of agri-environmental
management: a meta-analysis. Proc. Royal Soc. B , 278 ,
1894– 1902.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B.,
Singmann, H., et al. (2015). Package ‘lme4’. Convergence ,
12.
Blaauw, B.R. & Isaacs, R. (2014). Floral plantings increase wild bee
abundance and the pollination services provided to a
pollination‐dependent crop. J. Appl. Ecol. , 51, 890– 898.
Blitzer, E.J., Dormann, C.F., Holzschuh, A., Klein, A.M., Rand, T.A., &
Tscharntke, T. (2012). Spillover of functionally important organisms
between managed and natural habitats. Agric. Ecosyst. Environ. ,
146, 34– 43.
Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R.,
Stevens, M.H.H., et al. (2009). Generalized linear mixed models:
a practical guide for ecology and evolution. Trends Ecol. Evol. ,
24, 127– 135.
Campbell, A.J., Biesmeijer, J.C., Varma, V. & Wäckers, F.L. (2012).
Realising multiple ecosystem services based on the response of three
beneficial insect groups to floral traits and trait diversity.Basic Appl. Ecol. , 13, 363–370.
Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M. & Marini, L.
(2017), High cover of hedgerows in the landscape supports multiple
ecosystem services in Mediterranean cereal fields. J. Appl.
Ecol. , 54, 380–388.
Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I.,
Bommarco, R., et al. (2019). A global synthesis reveals
biodiversity-mediated benefits for crop production. Sci. Adv ., 5:
eaax0121.
Bommarco, R., Kleijn, D. & Potts, S. (2013).Ecological intensification: harnessing ecosystem services for food
security. Trends Ecol. Evol., 28, 230– 238.
Foley, J., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter,
S.R. et al . (2005). Global consequences of land use.Science , 309, 570–574.
Gagic, V., Kleijn, D., Báldi, A., Boros, G., Jørgensen, H.B., Elek,et al. (2017). Combined effects of agrochemicals and ecosystem
services on crop yield across Europe. Ecol. Lett. , 20,
1427–1436.
Ganser, D., Mayr, B., Albrecht, M. & Knop, E. (2018). Wildflower strips
enhance pollination in adjacent strawberry crops at the small scale.Ecol. Evol. , 8, 11775–11784.
Ganser, D., Knop, E. & Albrecht, M. (2019). Sown wildflower strips as
overwintering habitat for arthropods: Effective measure or ecological
trap? Agric. Ecosyst. Environ. , 275 , 123–131.
Garbach, K. & Long, R.F. (2017). Determinants of field edge habitat
restoration on farms in California’s Sacramento Valley. J.
Environ. Manage. , 189 , 134–141.
Gardiner, M.M., Landis, D.A., Gratton, C., DiFonzo, C.D., O’Neal, M.,
Chacon, J.M., et al. (2009). Landscape diversity enhances
biological control of an introduced crop pest in the north-central USA.Ecol. Appl. , 19, 143–154.
Garibaldi, L.A., Steffan‐Dewenter, I., Kremen, C., Morales, J.M.,
Bommarco, R., Cunningham, S.A., et al. (2011). Stability of
pollination services decreases with isolation from natural areas despite
honey bee visits. Ecol. Lett. , 14, 1062–1072.
Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A.,
Bommarco, R., Cunningham, S.A., et al. (2013). Wild pollinators
enhance fruit set of crops regardless of honey bee abundance.Science , 339 , 1608–1611.
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence,
D., Muir, J.F., et al. (2010). Food security: the challenge of
feeding 9 billion people. Science , 327, 812–818.
Grab, H., Poveda, K., Danforth, B. & Loeb, G. (2018). Landscape context
shifts the balance of costs and benefits from wildflower borders on
multiple ecosystem services. Proc. Royal Soc. B, 285, 20181102.
Haaland, C., Naisbit, R.E., & Bersier, L.F. (2011). Sown wildflower
strips for insect conservation: a review. Insect Conserv.
Divers ., 4, 60– 80.
Haan, N., Zhang, Y., & Landis, D.A. (2020). Predicting landscape
configuration effects on agricultural pest suppression. Trends
Ecol. Evol. , 35, 175– 186.
https://doi.org/10.1016/j.tree.2019.10.003.
Hoffmann, U.S., Jauker, F., Diehl, E., Mader, V., Fiedler, D., Wolters,
V. & Diekoetter, T. (2020). The suitability of sown wildflower strips
as hunting grounds for spider-hunting wasps of the genusTrypoxylon depends on landscape context. J. Insect Cons.,24, 125– 131.
Holland, J.M., Bianchi, F., Entling, M.H., Moonen,
A.C., Smith, B.M. & Jeanneret, P. (2016). Structure,
function and management of semi‐natural habitats for conservation
biological control: a review of European studies. Pest Manage.
Sci., 72, 1638– 1651.
IPBES (2016). The assessment report of the Intergovernmental
Science‐Policy Platform on Biodiversity and Ecosystem Services on
pollinators, pollination and food production. S.G. Potts V.L.
Imperatriz‐Fonseca & H.T. Ngo (eds). Secretariat of the
Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem
Services, Bonn, Germany, 827 pp.
IPBES (2018). The IPBES regional assessment report on biodiversity and
ecosystem services for Europe and Central Asia. Rounsevell, M., Fischer,
M., Torre-Marin Rando, A. and Mader, A. (eds.). Secretariat of the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services, Bonn, Germany. 892 pp.
IPBES (2019). Summary for policymakers of the global assessment report
on biodiversity and ecosystem services of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz,
J. Settele, E.S. Brondizio E.S., H.T. Ngo, M. Guèze, J. Agard, et
al. (eds.). IPBES secretariat, Bonn, Germany.
Jonsson, M., Straub, C.S., Didham, R.K., Buckley, H.L., Case, B.S.,
Hale, R.J., et al. (2015). Experimental evidence that the
effectiveness of conservation biological control depends on landscape
complexity. J. Appl. Ecol. , 52, 1274–1282.
Karp, D.S., Chaplin-Kramer, R., Meehan, T.D., Martin, E.A., DeClerck,
F., Grab, H., et al. (2018). Crop pests and predators exhibit
inconsistent responses to surrounding landscape composition. Proc.
Natl. Acad. Sci. U.S.A. , 115, 7863–7870.
Kleijn, D., Rundlöf, M., Scheper, J., Smith, H.G. & Tscharntke, T.
(2011). Does conservation on farmland contribute to halting the
biodiversity decline? Trends Ecol. Evol. , 26, 474–481.
Kleijn, D., Bommarco, R., Fijen, T.P., Garibaldi, L.A., Potts, S.G., &
van der Putten, W.H. (2019). Ecological intensification: bridging the
gap between science and practice. Trends Ecol. Evol . 34,
154–166.
Kovács-Hostyánszki, A., Espíndola, A., Vanbergen, A.J., Settele, J.,
Kremen, C. & Dicks, L.V. (2017) Ecological intensification to mitigate
impacts of conventional intensive land use on pollinators and
pollination. Ecol. Lett. , 20, 673–689.
Kremen, C. & M’Gonigle, L.K. (2015). Small‐scale restoration in
intensive agricultural landscapes supports more specialized and less
mobile pollinator species. J. Appl. Ecol. , 52, 602– 610.
Kremen, C., M’Gonigle, L.K. & Ponisio, L.C. (2018). Pollinator
community assembly tracks changes in floral resources as restored
hedgerows mature in agricultural landscapes. Front. Ecol. Evol. ,
6, 1–10.
Kremen, C., Albrecht, M. & Ponisio, L. (2019) Restoring pollinator
communities and pollination services in hedgerows in intensively managed
agricultural landscapes. In: The ecology of hedgerows and field
margins . Dover, J.W. (ed.) Routledge, New York, USA. pp. 163–185.
Lander, T.A., Bebber, D.P., Choy, C.T.L., Harris, S.A. & Boshier, D.H.
(2011). The Circe principle explains how resource-rich land can waylay
pollinators in fragmented landscapes. Curr. Biol. , 21 ,
1302–1307.
Lundin, O., Ward, K.L. & Williams, N.M. (2019). Identifying native
plants for coordinated habitat management of arthropod pollinators,
herbivores and natural enemies. J. Appl. Ecol. , 56, 665–676.
Martin, E.A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic,
V., et al. (2019). The interplay of landscape composition and
configuration: new pathways to manage functional biodiversity and
agroecosystem services across Europe. Ecol. Lett .,
22, 1083–1094
M’Gonigle, L.K., Ponisio, L., Cutler, K. & Kremen, C. (2015). Habitat
restoration promotes pollinator persistence and colonization in
intensively‐managed agriculture. Ecol. Appl. , 25, 1557– 1565.
M’Gonigle, L.K., Williams, N.M., Lonsdorf, E. & Kremen, C. (2017). A
tool for selecting plants when restoring habitat for pollinators.Conserv. Lett. , 10, 105–111.
Morandin, L.A. & Kremen, C. (2013). Hedgerow restoration promotes
pollinator populations and exports native bees to adjacent fields.Ecol. Appl. , 23, 829– 839.
Morandin, L.A., Long, R.F. & Kremen, C. (2016). Pest control and
pollination cost–benefit analysis of hedgerow restoration in a
simplified agricultural landscape. J. Econ. Entomol. , 109, 1–8.
Nicholson, C.C., Ricketts, T.H., Koh, I., Smith, H.G., Lonsdorf, E.V.,
& Olsson, O. (2019). Flowering resources distract pollinators from
crops: Model predictions from landscape simulations. J. Appl.
Ecol. , 56 , 618–628.
Phillips, B.W. & Gardiner, M.M. (2015). Use of video surveillance to
measure the influences of habitat management and landscape composition
on pollinator visitation and pollen deposition in pumpkin
(Cucurbita pepo ) agroecosystems. PeerJ , 3, e1342.
Pywell, R., Heard, M., Woodcock, B., Hinsley, S., Ridding, L.,
Nowakowski, M. et al. (2015). Wildlife‐friendly farming increases
crop yield: evidence for ecological intensification. Proc. Roy.
Soc. B ., 282, 20151740.
R Core Team. (2017). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Ricketts, T.H., Regetz, J., Steffan‐Dewenter, I., Cunningham, S.A.,
Kremen, C., Bogdanski, A., et al. (2008). Landscape effects on
crop pollination services: are there general patterns?. Ecol.
Lett. , 11, 499– 515.
Rundlöf, M., Lundin, O. & Bommarco, R. (2018). Annual flower strips
support pollinators and potentially enhance red clover seed yield.Ecol. Evol. , 8, 7974– 7985.
Rusch, A., Chaplin-Kramer, R., Gardiner, M.M., Hawro, V., Holland, J.,
Landis, D., et al. (2016). Agricultural landscape simplification
reduces natural pest control: A quantitative synthesis. Agric.
Ecosyst. Environ. , 221, 198– 204.
Schellhorn, N.A., Gagic, V. & Bommarco, R. (2015). Time will tell:
resource continuity bolsters ecosystem services. Trends Ecol.
Evol. , 30, 524–530.
Scheper, J., Holzschuh, A., Kuussaari, M., Potts,
S., Rundlöf, M., Smith, H. et al. (2013).
Environmental factors driving the effectiveness of European
agri‐environmental measures in mitigating pollinator loss – a
meta‐analysis. Ecol. Lett. , 16, 912– 920.
Scheper, J., Bommarco, R., Holzschuh, A., Potts, S.G., Riedinger, V.,
Roberts, S.P., et al . (2015). Local and landscape‐level floral
resources explain effects of wildflower strips on wild bees across four
European countries. J. Appl. Ecol., 52, 1165– 1175.
Steffan‐Dewenter, I. & Tscharntke, T. (2001). Succession of bee
communities on fallows. Ecography , 24, 83– 93.
Sutter, L., & Albrecht, M. (2016). Synergistic interactions of
ecosystem services: florivorous pest control boosts crop yield increase
through insect pollination. Proc. Royal Soc. B , 283, 20152529.
Sutter, L., Jeanneret, P., Bartual, A.M., Bocci, G., & Albrecht, M.
(2017). Enhancing plant diversity in agricultural landscapes promotes
both rare bees and dominant crop‐pollinating bees through complementary
increase in key floral resources. J. Appl. Ecol., 54,
1856– 1864.
Sutter, L., Albrecht, M. & Jeanneret, P. (2018). Landscape greening and
local creation of wildflower strips and hedgerows promote multiple
ecosystem services. J. Appl. Ecol. , 55, 612– 620.
Thies C. & Tscharntke, T. (1999): Landscape structure and biological
control in agroecosystems. Science 285: 893– 895.
Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I. & Thies,
C. (2005). Landscape perspectives on agricultural intensification and
biodiversity - ecosystem service management. Ecol. Lett ., 8,
857–874.
Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Batáry, P., DeClerck,
F., Gratton, C., et al. (2016). When natural habitat fails to
enhance biological pest control–Five hypotheses. Biol. Cons. ,
204, 449– 458.
Tschumi, M., Albrecht, M., Entling, M. & Jacot, K.
(2015). High effectiveness of tailored flower strips in reducing
pests and crop plant damage. Proc. Roy. Soc. B .,282, 20151369.
Tschumi, M., Albrecht, M., Collatz, J., Dubsky, V., Entling, M. H.,
Najar‐Rodriguez, et al. (2016). Tailored flower strips promote
natural enemy biodiversity and pest control in potato crop. J.
Appl. Ecol. , 53, 1169–1176.
Veres, A., Petit, S., Conord, C. & Lavigne, C. (2013). Does landscape
composition affect pest abundance and their control by natural enemies?
A review. Agric. Ecosyst. Environ. , 166, 110–117.
Venturini, E.M., Drummond, F. A., Hoshide, A.K., Dibble, A.C. & Stack,
L.B. (2017a). Pollination reservoirs for wild bee habitat enhancement in
cropping systems: a review. Agroecol. Sust. Food , 41, 101–142.
Venturini, E.M., Drummond, F.A., Hoshide, A.K., Dibble, A.C. & Stack,
L.B. (2017b). Pollination reservoirs in lowbush blueberry (Ericales:
Ericaceae). J. Econ. Entomol. , 110, 333–346.
Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J., May,et al. (2015). Native wildfloral plantings support wild bee
abundance and diversity in agricultural landscapes across the United
States. Ecol. Appl. , 25, 2119–2131.
Williams, N.M., Isaacs, R., Lonsdorf, E., Winfree, R. & Ricketts, T.H.
(2019). Building resilience into agricultural pollination using wild
pollinators. In: Agricultural resilience – perspectives from ecology
and economics. Eds. S.M. Gardner, S.J. Ramsden, R.S. Hails. Cambridge
University Press. pp. 109-134.
Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009).Mixed effects models and extensions in ecology with R . Springer
Science & Business Media, New York, USA.